Interoperability Aspects

of the

Grand Alliance HDTV System

Glenn A. Reitmeier David Sarnoff Research Center

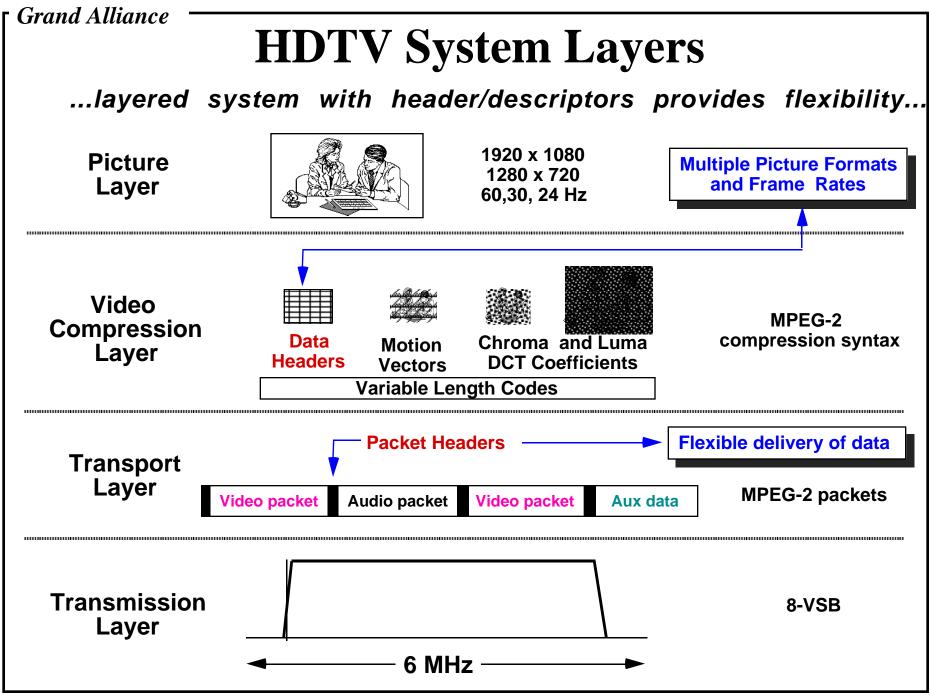
March 20, 1994

Interoperability

...HDTV is more than better entertainment television...

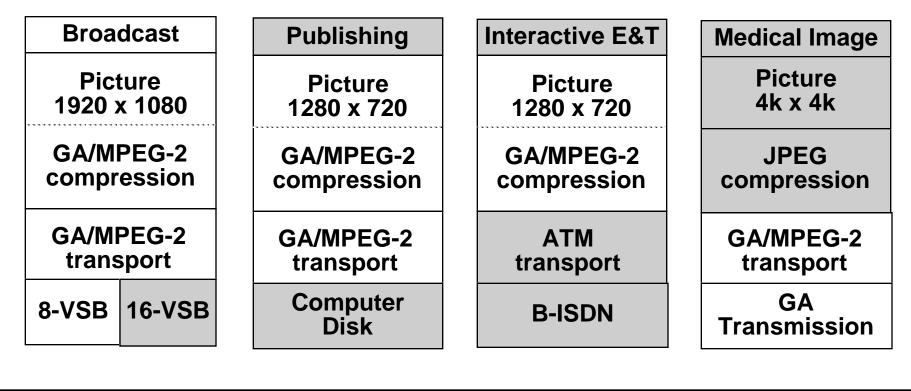
PS/WP4 Definition:

"The capability of providing useful and cost-effective interchange of electronic image, audio and associated data: among different signal formats, among different transmission media, among different applications, among different industries, among different performance levels."


Interoperability - Who Cares?

...interoperability will impact the bottom line...

- The Public (consumers)
 - demands products and services that make sense
- Producers
 - programming that can be delivered to new audiences on both HDTV and computer appliances
- Post-Production companies
 - new and growing markets for their services
- Broadcasters
 - new audiences, new services, new revenues
 - reduced cost of operations and equipment
- Equipment manufacturers
 - new and growing markets for equipment


Interoperability Introduction

- The Grand Alliance HDTV system was designed to provide a high degree of interoperability with other image-based media, ranging from computers to film
- Grand Alliance HDTV is a layered digital system
 - picture
 - compression
 - transport (packet format)
 - transmission
- Layered architecture is fundamental to interoperability
- Header/descriptors provide flexibility
- Each individual layer provides important capabilities and interoperability characteristics

Benefits of Layered Systems

- Many applications and delivery media share technology
- Creates mutual benefits and economies of scale
- Consumers will want many applications on an HDTV

Picture Format Relationships

Cable/Satellite Digital SDTV based on CCIR-601 and lower resoultions

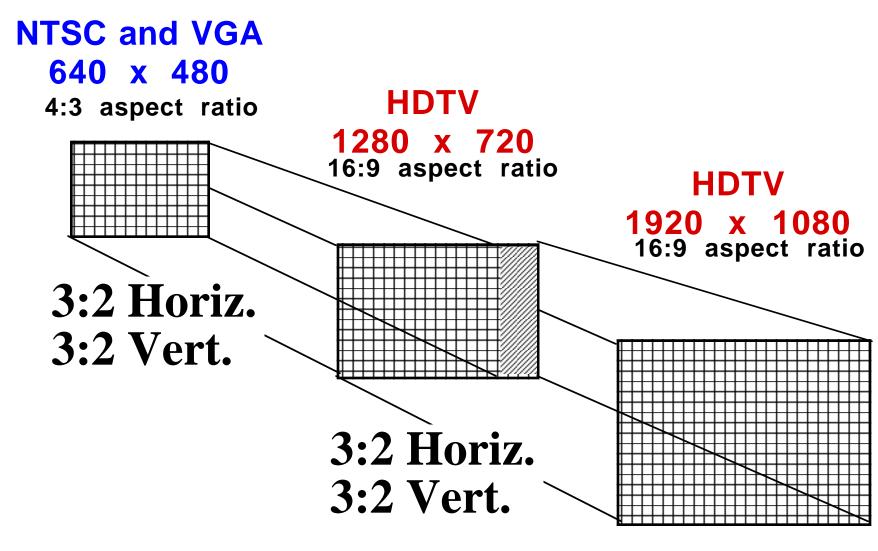
Film analog progressive 24 frames/sec NTSC analog x 480 interlaced 59.94 fields/sec CCIR 601 720 x 480 interlaced 59.94 fields/sec

> CCIR 601 720 x 576 interlaced 50 fields/sec

US HDTV Production 1920 x 1080 interlaced 59.94/60 fields/sec

SMPTE 240M 1920 x 1035 interlaced 60 fields/sec Multiple pixel formats and frame rates

U.S. Terrestrial HDTV


Computer Multimedia wide variety of image sizes square pixels, progressive scan wide variety of display frame rates VGA 640 x 480 PAL & SECAM analog x 576 interlaced 50 fields/sec

Euro HDTV Production? 1440 x 1152 ? interlaced 50 fields/sec

Multiple formats and frame rates provide interoperability with HDTV production, film, computers and NTSC

GA Format Relationships

...HDTV and other formats have simple conversion...

GA Picture Formats and HD Production

	Spatial	Temporal	
3:2 relation	1920 x 1080 (square pixels)	59.94 / 60 interlaced 29.97 / 30 progressive 23.97 / 24 progressive	
	1280 x 720 (square pixels)	59.94 / 60 progressive 29.97 / 30 progressive 23.97 / 24 progressive	

- For the short term
 - 1080 interlaced production, 59.94 Hz based frame rates
- For the long term
 - square pixels for computer interoperability
 - 60 Hz based frame rates are avantageous
 - 720 and 1080 progressive production

GA Picture Formats and Film

Spatial	Temporal		
1920 x 1080 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	interlaced progressive progressive	
1280 x 720 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	progressive progressive progressive	

- The 24 Hz film formats allow efficient encoding of movies
- The 30 Hz film formats provide for higher frame rate progressive capture than conventional 24 Hz film
 often used in production of commercials

GA Picture Formats and Computers

Spatial	Temporal		
1920 x 1080 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	interlaced progressive progressive	
1280 x 720 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	progressive progressive progressive	

- Square pixels and progressive scanning provide interoperability with computers
 - computer graphics in production
 - HDTV receivers as information appliances

GA Picture Formats and NTSC

	Spatial	Temporal	
3:2 relation	1920 x 1080 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	interlaced progressive progressive
3:2 relation to "wide-NTSC"	1280 x 720 (square pixels)	59.94 / 60 29.97 / 30 23.97 / 24	progressive progressive progressive

- Initial 59.94 Hz based temporal rates of all formats simplify transcoding and dual standard receivers
- 3:2 relationship between NTSC and HDTV formats simplifies transcoding and dual standard receivers

Compression Relationships

Cable/Satellite SDTV & HDTV MPEG-2

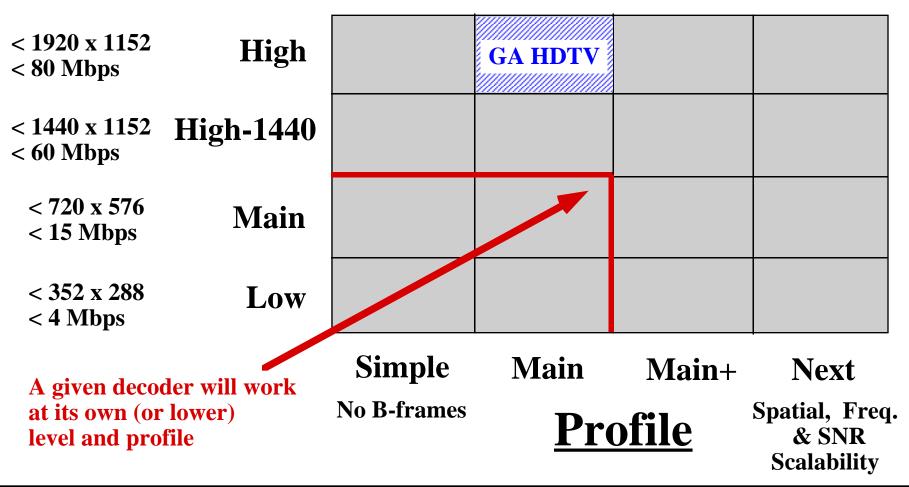
≈4 Mbps and greater
a few standard image sizes
and frame rates
> VHS quality

Computer Multimedia MPEG-1 and MPEG-2

1.5 Mbps and greater wide variety of image sizes and display frame rates wide range of quality

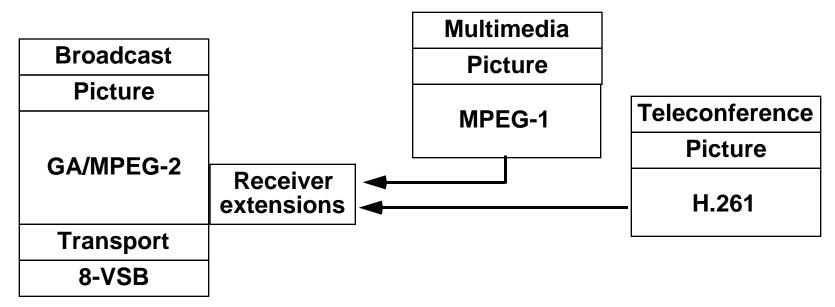
U.S. HDTV Transmission GA/MPEG-2

≈19 Mbps a few standard image sizes and frame rates

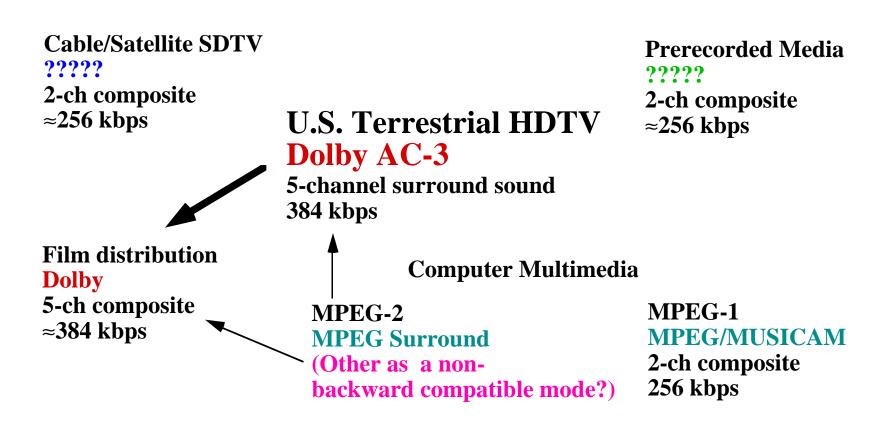

Teleconferencing H.261 ≈64 kbps low frame rate << VHS quality low latency

MPEG-2 is an emerging multi-industry, international (ISO) video compression standard that provides efficient encoding for both progressive and interlaced sources

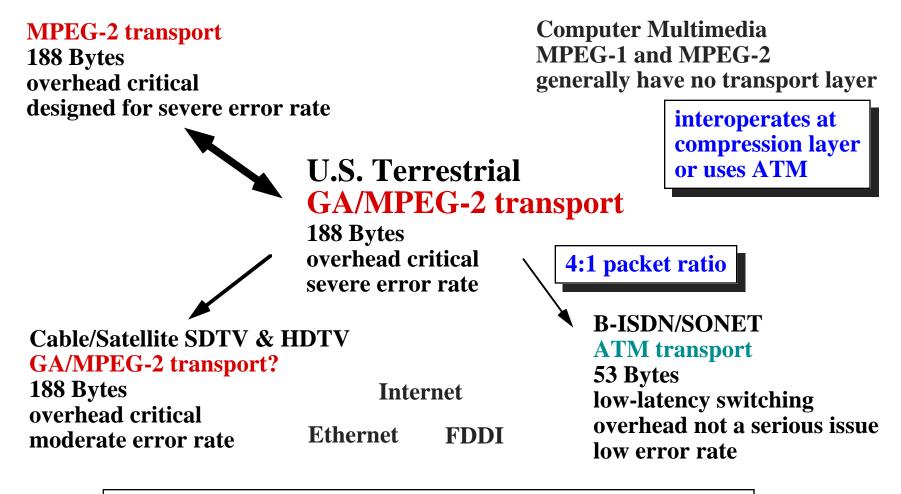
MPEG-2 Levels and Profiles


... MPEG-2 is a toolkit that addresses a variety of cost/performance grades...

Level


MPEG and H.261 Interoperability

- MPEG-2 is similar to MPEG-1 and H.261, and a programmable decoder could be built to handle them all
- Market demand will determine if manufacturers build this capability into HDTVs


• Interoperability in the reverse direction is less important, since no existing MPEG-1 or H.261 decoder can decode an MPEG-2 stream, much less at HDTV level

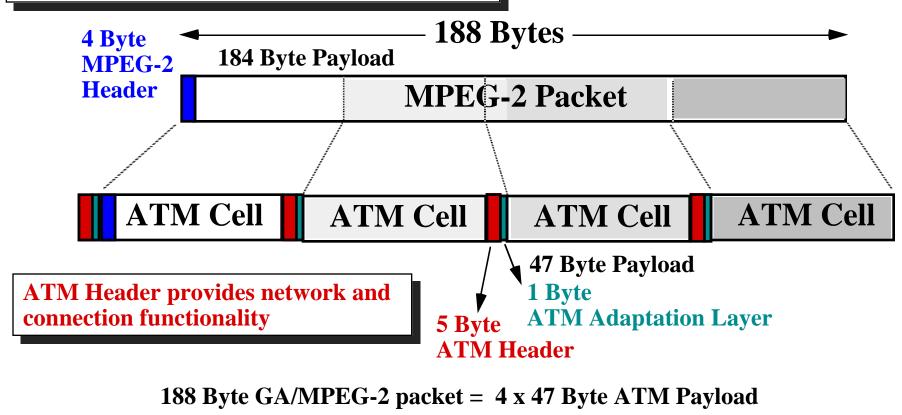
Audio Relationships

Audio interoperability is significantly eased in comparison to video because its much lower speed requirements can be fulfilled with programmable devices (audio is about 2% the data rate of HD video)

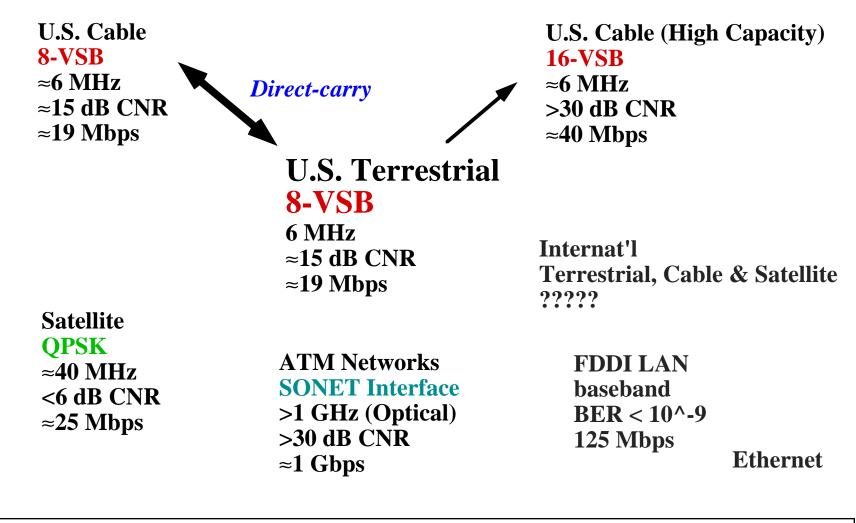
Transport Relationships

MPEG-2 transport is an emerging standard that provides interoperability with ATM

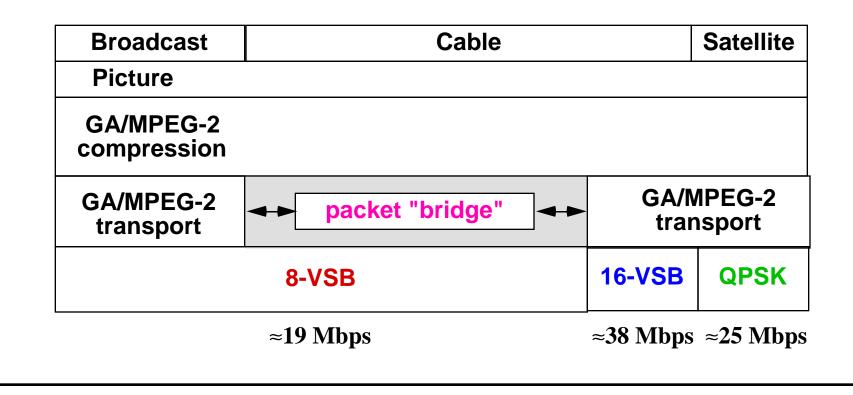
Why Not ATM?


- Efficiency and Functionality
 - ATM's ≈10% header overhead is too high for compressed HDTV in a 6 MHz simulcast channel (video quality is bit limited)
 - must survive in the poor RF transmission environment (Error Correction is more powerful with longer packets)
 - ATM does not provide certain services
- GA /MPEG-2 Transport (an ATM-like approach with packet header/descriptors)
 - $\approx 2\%$ header overhead
 - better FEC efficiency
 - timing recovery and media synchronization services
 - encryption control
 - 4 times the packet size of ATM
 - simple interoperability with ATM

ATM Interoperability


- One MPEG-2 packet fits into 4 ATM cells
- MPEG-2 and ATM headers provide different functionality
- This allows HDTV to be easily used on ATM networks

MPEG-2 Header provides multiplexing, synchronization and encryption functionality


Transmission Relationships

Each delivery medium has unique capabilities and constraints

Cable and Satellite Interoperability

- Terrestrial 8-VSB signal can be carried directly by cable
- Packets can be merged into the packet stream of a higher rate transmission system, such as 16-VSB on cable and QPSK on satellite

Interoperability Summary

...a layered system with flexibility and interoperability at each layer.

- Picture Layer
 - multiple formats related to TV, film and computers
 - progressive and interlaced scan
 - square pixels
- Compression Layer
 - choice of MPEG-2 syntax enables international and interindustry exchange of bit streams
- Transport Layer
 - choice MPEG-2 packet format
 - relationship between MPEG-2 and ATM
- Transmission Layer
 - VSB for terrestrial and cable
 - bit stream exchange with other transmission media

Conclusions

- The Grand Alliance HDTV system is highly interoperable
- Interoperable HDTV will make broadcasters a vital part of the National Information Infrastructure
 - HDTV will deliver spectacular pictures...and data
 - multi-cast NTSC does not provoke consumer investment
 - data broadcast alone is an unclear business
- Interoperability will benefit the consumer
 - HDTV will be an information appliance in the home
- Interoperability will benefit the broadcast industry
 - new kinds of programming and services
 - new markets and new business opportunities
- Rapid adoption and deployment of the GA HDTV system is in the best interest of the broadcast industry and the nation