

Advanced Digital Television

System Description

SS-WP1 Certification

January 30, 1992

Outline

• Introduction

- Video and Audio Compression
- Transport and Transmission
- Coverage Area
- Summary

Key Elements of ADTV

• MPEG++ video compression

- ATRC adaptation of ISO-MPEG video compression standard
- upgrades MPEG to HDTV performance levels
- adds video format flexibility
- performs video data prioritization for robustness
- MUSICAM audio compression
 - ISO-MPEG audio compression standard
- Prioritized Data Transport
 - cell-relay data transport layer provides robustness
 - prioritized delivery of data allows "graceful degradation"
 - provides service flexibility (video, audio, data)
- Spectrally Shaped QAM
 - ATRC adaptation of proven and widely-accepted QAM
 - two-tier physical transmission
 - increases immunity from co-channel NTSC interference
 - reduces interference into NTSC co-channels

QAM Transmission

Symbols

ATRC

ADTV System Block Diagram

Video and Audio Compression

ATRC

Video Specifications

Raster	Formats	* 1050/2:1/59.94
		1050/1:1/29.97
		1050/1:1/24

- Pixel formats
 1440 x
 960 (720 x
 480)

 1440 x
 810 (720 x
 405)

 * 1500 x
 960 (750 x
 480)
- Sampling rate54.0 MHz (27.0 MHz chroma)* 56.64 MHz (28.32 MHz chroma)
- Bandwidth 24.5 to 27 MHz * 23.6 MHz
- Resolution730 to 810 TVL/PH* 700 TVL/PH (1248 samples/PW)
- Video bit rate 17.73 Mbps

* prototype hardware configuration

MPEG++

- MPEG provides high-quality compression
 - developed by a committee of worldwide compression experts
 - bi-directional motion compensation is a key attribute
 - solves occlusion/reveal problems of traditional approaches
 - preserves motion compensation performance on a scene cut

• ATRC improvements

- scene analysis for perceptual optimization
- frame-based coding provides HDTV and film modes and transparently handles interlaced and progressive scan
- Prioritization produces High-Priority data that constitutes a "viewable picture" -- and Standard-Priority data that carries the additional information for "full HDTV quality"
 viewable pictures provide service during occassional periods when full-quality pictures cannot be received

MPEG++ Concept

- ATRC

Frame-based Coding

HDTV Production

1050 Lines 2:1 Interlaced 59.94 fields per second

Mixed-Media Production

0	0	0
\circ	0	0
•	0	•
•	0	0
	0	0
•	•	•
•	0	•
•	0	0
•	0	0
0		i o l
0		

1050 Lines Progressive Scan 29.97 frames per second

Film Production

1050 LinesProgressive Scan24 frames per second

- Constant velocity motion is accurately predicted by motion vectors and removed by motion compensation
- Residual motion energy is treated as vertical resolution
 - high contrast (perceptually visible) information is preserved
 - after decompression, re-interlacing reconstitutes the temporal information

Group of Pictures

Slices, Macroblocks and Blocks

A slice is a collection of adjacent Macroblocks

- ATRC

Motion Compensation

• Motion Vectors are derived from luminance

- Motion estimation utilizes full-search block matching performed on macroblocks
- Motion vectors have 1/2 pixel accuracy
- Maximum motion vector range is [-1024,+1023] (motion range is an encoder manufacturer's cost/performance tradeoff — prototype hardware implements a [-32,+31] range)

ATRC

Coding Modes

FRAME TYPE	INTRAFRAME MODE	INTERFRAME MODES		
		FORWARD MOTION	BACKWARD MOTION	BIDIRECTIONAL MOTION
I (INTRAFRAME)	\checkmark	N/A	N/A	N/A
P (PREDICTED)			N/A	N/A
B (BIDIRECTIONAL)				

• Coding mode selection is performed for each macroblock

- performance is optimized to picture content
- example: on a scene cut, B-frame MBs will be coded as intra

Compression Techniques

• Lossy techniques

- adaptive quantization matrix
- Lossless techniques
 - DPCM on MV and DC coefficients of intra-coded MBs
 - run-length coding and zig-zag scanning
 - variable length coding using Huffman tables

- ATRC

Zig-Zag DCT Scanning

D.C. Coefficient.

ADTV Audio Specifications

MUSICAM — (Masking-Pattern Adapted Universal Subband Integrated Coding and Multiplexing)

- ISO-MPEG Layer II
- Subband Coding

ATRC

• Bit allocation of each subband is determined by use of a psychoacoustic model

Nominal Audio configuration	2 stereo pairs of audio
Sampling rate	48 kHz, (8008/5 x 29.97)
Bandwidth	23 kHz
Dynamic range	16 bits/sample
Compressed audio bit rate	256 kbps per stereo pair
Auxiliary Data	256 kbps

Data Compression Summary

- ADTV's MPEG++ video and MUSICAM audio are based on ISO-MPEG compression standards
 - proven techniques developed as winners of side-by-side expert evaluations
 - bi-directional motion compensation provides high performance
- MPEG++ improves standard MPEG performance and adapts it for simulcasting
 - flexible video formats
 - picture quality
 - prioritization

- MPEG was designed for digital storage media
 - preserves search and random access capabilities
 - a good basis for VCR

Transport and Transmission

Transport Specifications

SERVICE DATA (video, audio, etc.)	120 bytes
forward error correction	20 bytes
frame check sequence (error detect)	2 bytes
adaptation header	4 bytes
service type	1 byte
cell synchronization	1 byte
total cell size	148 bytes

Prioritized Data Transport

- Packages and synchronizes data for two-tier (High-Priority and Standard-Priority) transmission
- Transport is a communications layer that encapsulates the MPEG++ bit stream in fixed-size transport cells (standard practice in data communications)
- Provides many layers of "safety nets"
 - error correction
 - error detection

- decoder reentry
- Provides flexibility and extensibility
 - there is no predetermined mix of video, audio, or data
 - service type mix can change dynamically
 - cells with unrecognized service types are disregarded
 - accepted practice in data communications

Prioritized Data Transport Format

ATRC

ADTV separately packages video, audio and auxiliary data in fixed-length cells.

- ATRC

Reed-Solomon Code

Data Transport Robustness

- Reed-Solomon FEC corrects up to 10 Byte errors per cell
- Data interleaving protects against burst errors

- Cyclic Redundancy Check FCS detects uncorrectable errors
- MPEG++ adaptation header provides a reentry pointer that allows the video decoder to smoothly resume processing good video data after a cell loss
- Erroneously received cells are discarded
- Cell sync and sequence number allow synchronization even under extremely poor transmission conditions

Reentry Pointer Example

ATRC

Input Data Blocks

Four variable-length data records (B1, B2, B3, and B4) are to be formatted according to the PDT format specification into four transport cells. Cells 1,3 and 4 each have an entry points corresponding to the start of the first new video record, while cell 2 (which contains video data segmented from within record B2) has no entry point. In the event that an error leads to a loss of cell 2, the entry pointer in cell 3 enables the receiver to decode B1, reject B2 and restart video decoding at record # B3.

- ATRC —		A	DTV	Data	Strean	1		
VIDEO	VIDEO	AUX DAT 2	AUDIO 1	VIDEO	AUX DAT 1	AUDIO 2	VIDEO	AUX DAT 1

• An ADTV data stream consists of a flow of cells

- each cell contains a single type of data
- there is no predetermined mix of video, audio, or aux data
- service type mix can change dynamically
- cells with unrecognized service types are disregarded
- This allows flexibility in the services that can be provided
 - "second video program" in a user-selectable window
 - download program-related software to "smart receivers"
 - rapid enabling of pay-per-view decoders on cable
 - future enhancements such as compatible 3-D HDTV

Important Signal Characteristics

• Ability to continuously deliver a high data rate

- Ability to provide coverage area comparable to NTSC, even with relatively low power transmission
- An NTSC-friendly signal that minimizes interference with existing NTSC service
- Ability to withstand very high levels of NTSC co-channel interference

Spectrally-Shaped QAM

- SS-QAM uses two separate 32-QAM carriers
 - a wideband Standard-Priority carrier
 - a narrowband, higher-power High-Priority carrier
- The HP carrier has "viewable picture" and sound
- The SP carrier has the rest of the HDTV data
- Spectral structure avoids NTSC co-channel interference
 - NTSC picture and sound carriers miss ADTV spectrum
 - reliable ADTV reception up to -2 dB D/U ratio

• NTSC-friendly operation

- low ADTV power

- ADTV spectrum misses NTSC sound carrier
- HP carrier is attenuated by NTSC VSB filter

Spectrally-Shaped QAM Concept

- Total data rate 24 Mbps
- Net data rate 18.5 Mbps

- ATRC

Transmission Specifications

Spectrally Shaped QAM — two trellis coded 32-QAM carriers

<u>High Priority Carrier</u>		Standard Priority Carrier		
Symbol rate	0.96 MHz	Symbol rate	3.84 MHz	
Bandwidth	1.125 MHz	Bandwidth	4.5 MHz	
Data rate	4.8 Mbps	Data rate	19.2 Mbps	
Threshold CNR	(3.7 net) 11.1 dB	Threshold CNR	(14.8 net) 16.1 dB	

Overall SS-QAM signal

Channel Bandwidth6 MHzData rate24 Mbps (18.5 Mbps net)HP:SP power ratio5 dB

SS-QAM and NTSC Spectra

Noise Equivalent Factor

- NTSC VSB filter attenuates interfering signals in the first 1.25 MHz portion of the 6 MHz channel
- Noise or interference power in the lower sideband can be 12 dB higher than in other spectral areas, and produce subjectively equivalent impairment
- This allows average power of ADTV to be 1.4 dB higher than an equivalent 6 MHz random noise source

- ATRC

Effect of NTSC VSB Filter

Transmission Robustness Summary

- MPEG++ prioritization produces a viewable picture in its High Priority data
- Program audio is always High Priority data

- High Priority video and audio data is delivered by the High Priority carrier in SS-QAM. This ensures that a viewable picture and high-quality sound remain available even under poor transmission conditions.
- Trellis coding provides an additional 3 db of coding gain, increasing the robustness of both HP and SP signals.

ATRC

ADTV Receiver

ATRC

ADTV Receiver Robustness

Additional robustness is provided by the ADTV receiver:

- Carrier and clock recovery is derived from the higher power High Priority signal
- Cells with uncorrectable errors are discarded in order to ensure the integrity of all bits that are decoded by the receiver, protecting against gross artifacts
- ADTV receivers may implement error concealment approaches that will further hide the effects of losing the video data during transmission

- ATRC -

Coverage Area

- Precise specification of coverage area for a simulcast system requires tradeoffs to be made among simulcast coverage area, accommodation percentage, and the limits of acceptable interference into existing NTSC service
- These decisions are beyond the scope of a proponent
- Such tradeoffs are most appropriately made for the public good by the FCC and its Advisory Committee, in cooperation with the broadcasting industry

Coverage Definition for Simulcast

- Applying NTSC coverage area rules (90% time availability at the fringe of the defined coverage area) without some additional condition on robustness is inappropriate for a digital system
- 90% time availability for full-quality HDTV service should be acceptable, IF...
- Sound and a viewable picture have very high (97-98%) time availability
- Increasing a signal's time availability from 90 to 97.7% requires 5 dB additional power density -- ADTV provides this margin by design

- ATRC

BER vs. CNR Performance

Coverage Area Strategy

ATRC

The defined coverage area of an NTSC station is based on 90% time availability of "acceptable quality" video at the Grade B contour. The more rugged performance of sync and sound are essential elements of NTSC's overall reliability and robustness.

The coverage area of an ADTV station is based on 90% time availability of its standard-priority carrier. The higher power high-priority carrier ensures reliability and robustness.

- ATRC

Coverage Area Parameters

- CNR required for full HDTV quality (16.1 dB)
- CNR required for viewable pictures and sound (11.1 dB)
- D/U ratio required to receive full-quality ADTV when interfered with by an NTSC co-channel station (-2 dB)
- D/U ratio required to receive full-quality ADTV when interfered with by an ADTV co-channel station (16.1 dB)
- Noise Equivalence factor ratio of interfering signal power to random noise that results in an identical subjective impairment to NTSC (1.4 dB)

NTSC Coverage Area

ATRC

Co-Channel NTSC Transmission with 155 Miles Station Separation.

ADTV Coverage Area Example #1

NTSC and ADTV Co-Channel Transmission with 115-Mile Station Separation.

ADTV Coverage Area Example #2

NTSC and ADTV Co-Channel Transmission with 112-Mile Station Separation.

- ATRC

Summary of Average Coverage Results

NTSC transmitter is assumed to have an ERP of either 37 dBK or 27 dBK, and the ADTV noise-limited contour distances have been computed for both of these cases, and then used to compute an average.

Minimum Separation	Accommodation Percentage	Coverage Radius (with 15% NTSC coverage area loss)	Coverage Radius (with 10% NTSC coverage area loss)	Coverage Radius (with 5% NTSC coverage area loss)
160 km (99.4 mi)	99.7 %	81.5 ± 0.5 (50.7 ± 0.3)	75.8 ± 1.2 (47.1 ± 0.8)	68.8 ± 1.9 km (42.8 ± 1.2 mi)
170 km (105.6mi)	98.8 %	$\begin{array}{r} \textbf{84.7} \pm \textbf{0.4} \\ \textbf{(52.6} \pm \textbf{0.3)} \end{array}$	78.9 \pm 1.1 (49.0 \pm 0.7)	71.9 ± 2.0 km (44.7 ± 1.3 mi)
180 km (111.9mi)	98.4 %	87.7 ± 0.5 (54.5 ± 0.3)	81.8 ± 1.0 (50.8 ± 0.6)	74.9 ± 1.8 km (46.5 ± 1.1 mi)
190 km (118.1mi)	96.6 %	$\begin{array}{l} \textbf{90.9} \pm \textbf{0.6} \\ \textbf{(56.8} \pm \textbf{0.4)} \end{array}$	84.7 ± 1.2 (52.6 ± 0.7)	77.6 ± 1.7 km (48.2 ± 1.1 mi)
200 km (124.3mi)	95.8 %	$\begin{array}{l}\textbf{94.3}\pm\textbf{0.6}\\\textbf{(58.6}\pm\textbf{0.4)}\end{array}$	87.8 ± 1.4 (54.6 ± 0.9)	80.5 ± 1.9 km (50.0 ± 1.2 mi)
210 km (130.5mi)	93.1 %	$\begin{array}{c} 97.5 \pm 0.4 \\ \textbf{(60.6 \pm 0.3)} \end{array}$	90.9 ± 1.2 (56.5 ± 0.8)	83.5 ± 2.0 km (51.9 ± 1.2 mi)

Coverage vs. Co-Channel Spacing

- ATRC

ATRC

Coverage vs. Accommodation

16-QAM Option

ATRC

Broadcasters in especially difficult co-channel situations can reduce their coverage area, or they can slightly reduce their picture quality and select ADTV's 16-QAM option.

- Threshold CNR of the Standard Priority carrier is reduced from 16.1 dB to 13.6 dB (2.5 dB improvement).
- Threshold CNR of the High Priority carrier is reduced from 11.1 dB to 8.6 dB (2.5 dB improvement).
- D/U ratio required for SP reception (with an NTSC co-channel interferor) is improved from -2 dB to -4 dB. D/U ratio required for HP reception is improved from about -6 dB to about -8 dB.
- D/U ratio required for SP reception (with an ADTV co-channel interferor) is improved from 16.1 dB to 13.6 dB.
- There is no change in the Noise Equivalent advantage factor of 1.4 dB.

Coverage Area Conclusions

• Average coverage area results indicate that a noise limited range of 55.5 miles can be provided with a co-channel spacing of 115 miles (97.5% accommodation)

- Broadcasters in especially difficult co-channel situations can reduce coverage area, or they can slightly reduce their picture quality and use ADTV's 16-QAM option. Average coverage area results indicate that this provides a noise limited range of 55.5 miles with a co-channel spacing of 105.6 miles (98.8% accommodation)
- For ADTV & NTSC co-channel separation larger than about 112 miles, essentially none of the ADTV coverage area is lost as a result of NTSC interference.
- ADTV provides coverage area that is superior to NTSC in situations where co-channel constraints are not present.

ATRC -

Summary

ATRC **ADTV System Overview** Production Pictures, Pixels and and Display Lines Video Data Structures MPEG++ Compression Code **Prioritize** SP HP **Prioritized Data** HP Cell SP Cell SP Cell SP Cell Transport Cells Serial Bit Stream **High-Priority** Channel Signal Spectrally-Shaped QAM Standard-Priority Channel Spectrum Transmission - 6 MHz -4

ATRC

ADTV System Block Diagram

Interoperability

- Two video formats (and additional MPEG flexibility)
 - 1440 x 960 perceptually square display pixels
 - 1440 x 810 provides logically square image pixels
- Interlaced & progressive scan frame based coding
 1050/2:1/59.94 HDTV
 - 1050/2:1/39.94 IID - 1050/1:1/24 film
 - 1050/1:1/24 film

- 1050/1:1/29.97 "mixed-production"
- MPEG-based compression provides the possibility of direct interchange of compressed data among HDTV and multimedia applications
- ADTV provides interoperability at any of its layers

Extensibility

- Flexibility in the mix of video, audio and data - there are no predetermined data rates
- The service mix can be dynamically allocated
 - well-suited to multimedia applications
 - can fundamentally change the nature of TV programming
- Open-ended extensibility

- receivers disregard cells of inappropriate service types
- no backward-compatibility burden for new applications
- can compatibly introduce new features and services

Low Cost

- Standards are the most important factor in reducing cost
 - single decoder for the consumer

- production volumes and economy of scale
- Memory is already commodity-priced. ADTV's format allows a frame to be stored in a 16 Mbit DRAM
 these are predicted to cost about \$13 each in 1996
- MPEG was designed for digital storage media -- it is a good basis for VCR
 - periodic I-frames allow search modes and random access
- Prioritized Data Transport format is similar to B-ISDN
 opportunity to use B-ISDN interface ICs

ADTV Features

- Multiple video formats that:
 - support both film and HDTV production
 - support both television and computer applications
 (both interlaced scan and progressive scan/square pixels)

• Data compression that:

- achieves outstanding picture and sound quality
- is compatible with international standards
- is practical for broadcasting (survives uncorrectable bit errors)

• Digital transmission that:

- provides a high 24 Mbps data rate
- is immune to NTSC interference and friendly to existing stations
- provides a large coverage area (comparable to NTSC)
- provides reliable fringe area service

• A system that:

- has a broad scope of services
- has interoperability with film and computers
- has extensibility for future growth